NON-SPECHT VARIETY GENERATED BY AN INVOLUTION SEMIGROUP OF ORDER FIVE

EDMOND W. H. LEE

Dedicated to the 65th birthday of Professor Mikhail V. Volkov

Abstract. The non-orthodox 0-simple semigroup A_2 of order five admits a unary operation under which it is an involution semigroup. It is known that A_2 generates a Specht variety of semigroups. In contrast, it is shown that as an involution semigroup, A_2 generates a non-Specht variety.

1. Introduction

1.1. The semigroup A_2. The non-orthodox 0-simple semigroup

$$A_2 = \langle a, e \mid a^2 = 0, aea = a, e^2 = eae = e \rangle$$

of order five plays a distinguished role in the theory of semigroups and especially in the study of Rees–Sushkevich varieties [12,13,26,30,32,33], that is, subvarieties of periodic varieties generated by completely 0-simple semigroups. The variety V_{A_2} generated by A_2 contains the well-known Brandt semigroup

$$B_2 = \langle a, b \mid a^2 = b^2 = 0, aba = a, bab = b \rangle$$

of order five. The semigroups A_2 and B_2 are essential to the construction of many examples with extreme varietal and equational properties [6,7,28,29,34,38,39,42]. Refer to the surveys by Shevrin et al. [35], Shevrin and Volkov [36], and Volkov [43] for more information on these semigroups.

<table>
<thead>
<tr>
<th>A_2</th>
<th>0</th>
<th>a</th>
<th>e</th>
<th>ae</th>
<th>ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>ae</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>ea</td>
<td>e</td>
<td>e</td>
<td>ea</td>
</tr>
<tr>
<td>ae</td>
<td>0</td>
<td>a</td>
<td>ae</td>
<td>a</td>
<td>ae</td>
</tr>
<tr>
<td>ea</td>
<td>0</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>ea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B_2</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>ab</th>
<th>ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>ab</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>ba</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ab</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>ab</td>
<td>0</td>
</tr>
<tr>
<td>ba</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>ba</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Multiplication tables of the semigroups A_2 and B_2

Up until the 1990s, only a few results on the varieties V_{A_2} and V_{B_2} were established, for example, these varieties are finitely based [37, 40] and finitely universal [41] in the sense that their lattices of subvarieties embed a copy of every finite lattice. After a decade of intense investigation in the 2000s [14–16,18–20,27,31,44], the subvarieties of V_{A_2} became better understood. Most crucially, the finite basis problem for these varieties has been completely solved [19].

Theorem 1. The variety V_{A_2} is a Specht variety, that is, a variety whose subvarieties are all finitely based. Consequently, the lattice of subvarieties of V_{A_2} is countably infinite and satisfies the descending chain condition.

2000 Mathematics Subject Classification. 20M07.

Key words and phrases. Semigroup, involution, variety, finitely based, Specht variety.
In particular, the interval $[\mathbf{V}B_2, \mathbf{V}A_2]$ is a distributive lattice [20].

![Diagram](image)

Figure 1. The interval $[\mathbf{V}B_2, \mathbf{V}A_2]$

1.2. **Main result.** A unary semigroup $\langle S, \ast \rangle$ that satisfies the equations

$$(x^\ast)^\ast \approx x \quad \text{and} \quad (xy)^\ast \approx y^\ast x^\ast$$

is called an *involution semigroup* or \ast-*semigroup*. The main algebra of the present article is the \ast-*semigroup* $\langle A_2, \ast \rangle$ with the transposition $ae \leftrightarrow ca$ as its unary operation, that is, \ast interchanges ae and ca and fixes all other elements:

$$0^\ast = 0, \quad a^\ast = a, \quad e^\ast = e, \quad (ae)^\ast = ca, \quad \text{and} \quad (ca)^\ast = ac.$$

The \ast-*semigroup* $\langle A_2, \ast \rangle$ is the only one with A_2 as its semigroup reduct. In contrast, the semigroup B_2 is the reduct of the \ast-*semigroups* $\langle B_2, \ast \rangle$ and $\langle B_2, \circ \rangle$ with transpositions $ab \leftrightarrow ba$ and $a \circ \rightarrow b$, respectively. The varieties $\mathbf{V}(B_2, \circ)$ and $\mathbf{V}(A_2, \ast)$ are incomparable in the lattice of varieties of \ast-*semigroups* while $\mathbf{V}(B_2, \ast)$ is a subvariety of $\mathbf{V}(A_2, \ast)$ [3, proof of Corollary 2.8].

Similar to the semigroups A_2 and B_2, the \ast-*semigroups* $\langle A_2, \ast \rangle$, $\langle B_2, \ast \rangle$, and $\langle B_2, \circ \rangle$ are also involved in the construction of a number of examples with extreme varietal and equational properties [1–3, 10, 11, 23, 24]. The variety $\mathbf{V}(B_2, \circ)$ is a Specht variety that contains only three subvarieties [9], but each of the varieties $\mathbf{V}(A_2, \ast)$ and $\mathbf{V}(B_2, \ast)$ contains at least infinitely many subvarieties [24]. Besides these results, not much is known about the subvarieties of $\mathbf{V}(A_2, \ast)$ or $\mathbf{V}(B_2, \ast)$.

In view of the small number of elements in the semigroup A_2, it seems plausible that the difference between the subvarieties of $\mathbf{V}(A_2, \ast)$ and of $\mathbf{V}A_2$, if any, will not be too significant. The present article refutes this optimism by demonstrating that the lattice of subvarieties of $\mathbf{V}(A_2, \ast)$ does not bear much resemblance to that of $\mathbf{V}A_2$ (cf. Theorem 1 and Figure 1).
Theorem 2. The interval \([V(B_2, *), V(A_2, *)]\) violates the descending chain condition. Consequently, the variety \(V(A_2, *)\) is not a Specht variety.

Some background information and results are first established in Section 2. The desired infinite descending chain in the interval \([V(B_2, *), V(A_2, *)]\) is then exhibited in Section 3.

1.3. **Open problems.** There is a large disparity in the number of results presently available for subvarieties of \(V.A_2\) and those of \(V(A_2, *)\); see, for example, Table 2. Most notably, the finite basis property of the varieties \(V(A_2, *)\) and \(V(B_2, *)\) remains elusive even though the varieties \(V.A_2\) and \(V.B_2\) have long been shown to be finitely based. In general, there exist finite \(*\)-semigroups \(\langle S, * \rangle\) where the varieties \(V.S\) and \(V(S, *)\) are not simultaneously finitely based [8, 22, 25].

<table>
<thead>
<tr>
<th></th>
<th>(VA_2)</th>
<th>(VB_2)</th>
<th>(V(A_2, *))</th>
<th>(V(B_2, *))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finitely based</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Specht</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>(2^{\aleph_0}) subvarieties</td>
<td>No</td>
<td>No</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Finitely universal</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 2. Some unknown properties of \(V(A_2, *)\) and \(V(B_2, *)\)

Determining any of the unknown properties in Table 2 may provide solutions to some of the following more general open problems.

Problem 3. Is there a non-finitely based variety generated by a \(*\)-semigroup of order five or less?

Problem 4. Is there a variety with \(2^{\aleph_0}\) subvarieties generated by a \(*\)-semigroup of order five or less?

Problems 3 and 4 are motivated by the existence of non-finitely based varieties generated by a \(*\)-semigroup of order six [3, 10, 23], some of which have \(2^{\aleph_0}\) subvarieties [24].

The variety of all commutative semigroups is long known to be finitely universal [4]. It follows that the variety of all commutative \(*\)-semigroups is also finitely universal; however, this variety is not generated by a finite \(*\)-semigroup.

Problem 5. Is there a finitely universal variety generated by a finite \(*\)-semigroup?

As for finitely universal varieties of semigroups, besides \(VA_2\) and \(VB_2\), there exist several that are generated by a semigroup with as few as four elements [17].

Since the \(*\)-semigroup \(\langle A_2, * \rangle\) is currently the smallest one known to generate a non-Specht variety, the existence of a smaller example is also of interest.

Problem 6. Is there a non-Specht variety generated by a \(*\)-semigroup of order four or less?

Every semigroup of order four or less generates a Specht variety, but it is unknown if the same result holds for all semigroups of order five [21].

2. **Preliminaries**

Acquaintance with rudiments of universal algebra is assumed. Refer to the monograph of Burris and Sankappanavar [5] for more information.
2.1. Terms and words. Let \(\mathcal{X} \) be a countably infinite alphabet throughout and let \(\mathcal{X}^* = \{ x^* \mid x \in \mathcal{X} \} \) be a disjoint copy of \(\mathcal{X} \). Elements of \(\mathcal{X} \cup \mathcal{X}^* \) are called variables. The free \(* \)-monoid over \(\mathcal{X} \) is the free semigroup \((\mathcal{X} \cup \mathcal{X}^*)^*\), together with the empty string \(\varepsilon \), using unary operation \(* \) given by \((x^n)^* = x^n \) for all \(x \in \mathcal{X} \),

\[
(x_1 x_2 \cdots x_m)^* = x_m^* x_{m-1}^* \cdots x_1^*
\]

for all \(x_1, x_2, \ldots, x_m \in \mathcal{X} \cup \mathcal{X}^* \cup \{ \varepsilon \} \). \(\varepsilon^* = \varepsilon \). Elements of the \(* \)-monoid \((\mathcal{X} \cup \mathcal{X}^*)^* \cup \{ \varepsilon \} \) are called terms, while words in the monoid \((\mathcal{X} \cup \mathcal{X}^*)^* \cup \{ \varepsilon \} \) are said to be plain. The plain projection of a word \(w \in (\mathcal{X} \cup \mathcal{X}^*)^* \), denoted by \(\overline{w} \), is the plain word obtained from \(w \) by removing all occurrences of the symbol \(* \). The content of a word \(w \), denoted by \(\text{con}(w) \), is the set of variables occurring in \(w \). If \(x, x' \in \text{con}(w) \) for some \(x \in \mathcal{X} \), then \(\{ x, x' \} \) is called a mixed pair of \(w \).

The set of terms over \(\mathcal{X} \) is the smallest set \(T(\mathcal{X}) \) such that
\[
\begin{align*}
\bullet & \quad \mathcal{X} \cup \{ \varepsilon \} \subseteq T(\mathcal{X}); \\
\bullet & \quad \text{if } t_1, t_2 \in T(\mathcal{X}), \text{ then } t_1 t_2 \in T(\mathcal{X}); \\
\bullet & \quad \text{if } t \in T(\mathcal{X}), \text{ then } t^* \in T(\mathcal{X}).
\end{align*}
\]

The subterms of a term \(t \) are then recursively defined as follows:
\[
\begin{align*}
\bullet & \quad \text{if } t \text{ is a subterm of } t; \\
\bullet & \quad \text{if } s_1, s_2 \text{ are subterms of } t \text{ where } s_1, s_2 \in T(\mathcal{X}), \text{ then so are } s_1 \text{ and } s_2; \\
\bullet & \quad \text{if } s^* \text{ is a subterm of } t \text{ where } s \in T(\mathcal{X}), \text{ then so is } s.
\end{align*}
\]

The proper inclusion \((\mathcal{X} \cup \mathcal{X}^*)^* \subseteq T(\mathcal{X}) \) holds and the involution axioms can be used to convert any term \(t \in T(\mathcal{X}) \) to \(\{ \varepsilon \} \) into a unique word \([t] \in (\mathcal{X} \cup \mathcal{X}^*)^* \). For instance, \([x (x^3 (yx^n)^*)^* y^r y^s] = xy (x^r y^n)^* y^r y^s\].

Remark 7. For any subterm \(s \) of a term \(t \), either \([s] \) or \([s]^* \) is a factor of \([t] \).

2.2. Equations, deducibility, and satisfiability. An equation is an expression \(s \approx t \) formed by terms \(s, t \in T(\mathcal{X}) \setminus \{ \varepsilon \} \). More specifically, a word equation is an equation \(u \approx v \in (\mathcal{X} \cup \mathcal{X}^*)^* \) and a plain equation is an equation \(u \approx v \) formed by plain words \(u, v \). An equation \(s \approx t \) is directly deducible from an equation \(p_1 \approx p_2 \) if there exists some substitution \(\alpha : \mathcal{X} \rightarrow T(\mathcal{X}) \setminus \{ \varepsilon \} \) such that \(\alpha(p_1) \) is a subterm of \(s \) and replacing this particular subterm \(\alpha(p_1) \) of \(s \) with \(\alpha(p_2) \) results in the term \(t \). An equation \(s \approx t \) is deducible from a set \(\Sigma \) of equations if there exists a finite sequence \(s = t_1, t_2, \ldots, t_r = t \) of distinct terms such that each equation \(t_i \approx t_{i+1} \) is directly deducible from some equation in \(\Sigma \).

A \(* \)-semigroup \((S, *) \) satisfies an equation \(s \approx t \), or \(s \approx t \) is satisfied by \((S, *) \), if for any substitution \(\alpha : \mathcal{X} \rightarrow S \), the elements \(\alpha(s) \) and \(\alpha(t) \) of \(S \) coincide; in this case, \(s \approx t \) is also said to be an equation of \((S, *) \). For any class \(\mathfrak{R} \) of \(* \)-semigroups, the set of equations satisfied by every \(* \)-semigroup in \(\mathfrak{R} \), denoted by \(\text{Eq} \mathfrak{R} \), is called the equational theory of \(\mathfrak{R} \). An equational basis for \(\mathfrak{R} \) is any subset \(\Sigma \) of \(\text{Eq} \mathfrak{R} \) such that every equation of \(\mathfrak{R} \) is deducible from \(\Sigma \). A variety is finitely based if it has a finite equational basis. A Specht variety is a variety whose subvarieties are all finitely based.

2.3. Certain equations of \(\langle A_2, * \rangle \). For each \(n \geq 2 \), define the sets of words
\[
\begin{align*}
P_n &= \{ x y_1^r y_2^s \cdots y_n^r x^* \mid r_1, r_2, \ldots, r_n \geq 2 \} \quad \text{and} \\
P_n^* &= \{ (y_n^r)^* (y_{n-1}^r)^* \cdots (y_1^r)^* x^* \mid r_1, r_2, \ldots, r_n \geq 2 \}.
\end{align*}
\]

Note that \(P_n^* = \{ [u]^* \mid u \in P_n \} \).

Lemma 8. Let \(u \approx v \) be any word equation such that \(u \in P_n \cup P_n^* \). Suppose that \(u \approx v \in \text{Eq}(A_2, *) \). Then
(i) \(v \) begins with \(x \) and ends with \(x^* \);

(ii) \(\text{con}(\nabla) = \text{con}(\Pi) = \{x, y_1, y_2, \ldots, y_n\} \);

(iii) none of the following words is a factor of \(v \):

\begin{itemize}
 \item (1) \(x^2, (x^*)^2, xx^*, x^*x \);
 \item (2) \(y_iy_j, y_i'y_j', \text{where } 1 \leq i, j \leq n \text{ and } j \neq i + 1 \);
 \item (3) \(y_iy_j^*, \text{where } 1 \leq i, j \leq n \);
 \item (4) \(y_i'y_j, \text{where } 1 \leq i, j \leq n \);
 \item (5) \(x^*y_i', y_ix, \text{where } 1 \leq i \leq n \);
 \item (6) \(x^*y_i, y_i'x^*, \text{where } 1 \leq i \leq n \);
 \item (7) \(xy_i, y_i'x^*, \text{where } 2 \leq i \leq n \);
 \item (8) \(xy_i', y_ix^*, \text{where } 1 \leq i \leq n - 1 \).
\end{itemize}

Proof. The substitutions \(\alpha, \beta, \gamma_m : \mathcal{X} \to A_2 \), where \(z \in \mathcal{X} \) and \(m \in \{1, 2, \ldots, 8\} \), are required in this proof:

\[
\alpha(t) = \begin{cases}
 a & \text{if } t = x, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\beta_z(t) = \begin{cases}
 0 & \text{if } t = z, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\gamma_1(t) = \begin{cases}
 a & \text{if } t = x, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\gamma_2(t) = \begin{cases}
 ea & \text{if } t = y_1, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\gamma_3(t) = \begin{cases}
 e & \text{if } t = x, \\
 ea & \text{otherwise;}
\end{cases}
\]

\[
\gamma_4(t) = \begin{cases}
 e & \text{if } t = x, \\
 a & \text{otherwise;}
\end{cases}
\]

\[
\gamma_5(t) = \begin{cases}
 a & \text{if } t = x, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\gamma_6(t) = \begin{cases}
 a & \text{if } t = y_i, \\
 e & \text{otherwise;}
\end{cases}
\]

\[
\gamma_7(t) = \begin{cases}
 e & \text{if } t = x, \\
 a & \text{otherwise;}
\end{cases}
\]

\[
\gamma_8(t) = \begin{cases}
 e & \text{if } t = y_i, \\
 a & \text{otherwise.}
\end{cases}
\]

(i) If either \(v \) does not begin with \(x \) or \(v \) does not end with \(x^* \), then the contradiction \(\alpha(u) = a \neq \alpha(v) \) is obtained.

(ii) If there exists some variable \(z \) of \(\Pi \) that does not occur in \(v \), then the contradiction \(\beta_z(u) = 0 \neq e = \beta_z(v) \) is obtained. Therefore the inclusion \(\text{con}(\Pi) \subseteq \text{con}(v) \) holds. By symmetry, the reverse inclusion \(\text{con}(\Pi) \supseteq \text{con}(v) \) also holds.

(iii) If for some \(m \in \{1, 2, \ldots, 8\} \), a word from \((m) \) is a factor of \(v \), then the contradiction \(\gamma_m(u) \neq 0 = \gamma_m(v) \) is obtained.

\[\square\]

Lemma 9. Let \(u \approx v \) be any equation such that \(u \in \mathcal{P}_n \cup \mathcal{P}_n^* \) and \(v \in (\mathcal{X} \cup \mathcal{X}^*)^+ \). Then \(u \approx v \in \text{Eq}(A_2, *) \) if and only if \(v \in \mathcal{P}_n \cup \mathcal{P}_n^* \).

Proof. Suppose that \(u \approx v \in \text{Eq}(A_2, *) \). Then by Lemma 8(i, ii), one has \(v = xwz^* \) for some \(w \in (\mathcal{X} \cup \mathcal{X}^*)^+ \) with \(\text{con}(w) = \{x, y_1, y_2, \ldots, y_n\} \). By Lemma 8(iii), the factors of \(v \) of length two can only possibly be

\[
x y_1 y_1^* y_2^* y_2 y_2^* \ldots y_n^* y_n y_n^* y \in A_n^*, \ y_1^* y_2^* \ldots y_n^* x^*.
\]

It follows that the word \(v \) is either

\[
x y_1 y_2^* \ldots y_n^* x^* \text{ or } x(y_n^*)r_n \ldots (y_1^*)r_1 x^*
\]

for some \(r_1, r_2, \ldots, r_n \geq 1 \). Define the substitution \(\alpha_i : \mathcal{X} \to A_2 \) by

\[
\alpha_i(t) = \begin{cases}
 a & \text{if } t = y_i, \\
 e & \text{otherwise.}
\end{cases}
\]
Then whenever \(r_i = 1 \), the contradiction \(\alpha_i(u) = 0 \neq e = \alpha_i(v) \) is obtained. Therefore \(r_1, r_2, \ldots, r_n \geq 2 \), whence \(v \in \mathcal{P}_n \cup \mathcal{P}_n^* \).

Conversely, if \(v \in \mathcal{P}_n \cup \mathcal{P}_n^* \), then it is easily shown that the equation \(u \approx v \) is deducible from the equations \(\{ x^2 \approx x^2, xyx^* \approx (xyx^*)^*, (x^2)^* x = (xy)^* y^* x^* \} \) of \((A_2, *) \).

\[\square \]

3. AN INFINITE DESCENDING CHAIN

For each \(n \geq 2 \), let \(W_n \) denote the subvariety of \(V(A_2, *) \) defined by the equation \(p_n \approx q_n \), where

\[p_n = xy_1y_2^2 \cdots y_{n-1}^2y_n^2x^* \quad \text{and} \quad q_n = xy_ny_{n-1}^2 \cdots y_1^2x^*, \]

and let \(W = \bigcap_{n \geq 2} W_n \). Note that \(p_n \in \mathcal{P}_n \) but \(q_n \notin \mathcal{P}_n \cup \mathcal{P}_n^* \). The \(*\)-semigroup \((B_2, *) \) has commuting idempotents and so satisfies the equation \(p_n \approx q_n \).

Therefore \(W_n \) and \(W \) are varieties in the interval \([V(B_2, *), V(A_2, *)] \). Further, the inclusion \(W_{n+1} \subseteq W_n \) holds because the equation \(p_n \approx q_n \) of \(W_n \) is deducible from the equations \(\{ x^3 \approx x^2, p_{n+1} \approx q_{n+1} \} \) of \(W_{n+1} \); specifically,

\[p_n \approx xy_1y_2^2 \cdots y_{n-1}^2y_n^2x^* \quad \text{by} \ x^3 \approx x^2 \]
\[\approx xy_ny_{n-1}^2 \cdots y_1^2x^* \quad \text{by} \ p_{n+1} \approx q_{n+1} \]
\[\approx q_n \quad \text{by} \ x^3 \approx x^2. \]

Consequently, the inclusions

\[V(A_2, *) \supseteq W_2 \supseteq W_3 \supseteq \cdots \supseteq W \supseteq V(B_2, *) \]

hold. These inclusions are shown to be proper in Inequalities 1–4 below.

Inequality 1. \(V(A_2, *) \neq W_2. \)

Proof. Since \(p_2 \in \mathcal{P}_2 \) and \(q_2 \notin \mathcal{P}_2 \cup \mathcal{P}_2^* \), it follows from Lemma 9 that \(\langle A_2, * \rangle \) does not satisfy \(p_2 \approx q_2 \). \(\square \)

Lemma 10. For any substitution \(\alpha : \mathcal{X} \to T(\mathcal{X}) \setminus \{ \emptyset \} \), none of the words \([\alpha(p_n)] \), \([\alpha(q_n)] \), and \([\alpha(q_n)] \) can be a factor of any word in \(\mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^* \).

Proof. Observe that

- \(p_n \) and \(q_n \) can be obtained from one other by renaming of variables;
- if \(u, v_1, v_2, \ldots, v_n \in T(\mathcal{X}) \setminus \{ \emptyset \} \) are such that

\[\alpha(x) = u, \ \alpha(y_1) = v_1, \ \alpha(y_2) = v_2, \ldots, \ \alpha(y_n) = v_n, \]

then \([(\alpha(p_n))^*] = [\beta(p_n)] \) and \([(\alpha(q_n))^*] = [\beta(q_n)] \), where \(\beta \) is any substitution such that

\[\beta(x) = u, \ \beta(y_1) = v_n^*, \ \beta(y_2) = v_{n-1}^*, \ldots, \ \beta(y_n) = v_1^*. \]

- the words in \(\mathcal{P}_{n+1} \) and the words in \(\mathcal{P}_{n+1}^* \) can be obtained from one other by renaming of variables.

Therefore by symmetry, it suffices to show that \([\alpha(p_n)] \) is not a factor of any word in \(\mathcal{P}_{n+1} \). Seeking a contradiction, suppose that \([\alpha(p_n)] \) is a factor of some word in \(\mathcal{P}_{n+1} \), say \(u[\alpha(p_n)]v \in \mathcal{P}_{n+1} \) for some \(u, v \in (\mathcal{X} \cup \mathcal{X}^*)^+ \cup \{ \emptyset \} \). Then

\[u[\alpha(x)] [\alpha(y_1)]^2 [\alpha(y_2)]^2 \cdots [\alpha(y_n)]^2 [\alpha(x)]^2 v = xy_1y_2^2 \cdots y_{n+1}^2x^* \]

for some \(r_1, r_2, \ldots, r_{n+1} \geq 2 \). Since \(\{ x, x^* \} \) is the only mixed pair of the word on the right side, simple inspection shows that

- \(u = \emptyset \) and \([\alpha(x)] \) is a nonempty prefix of \(xy_1y_2^2 \cdots y_{n+1}^2 \);
- \(v = \emptyset \) and \([\alpha(x)] \) is a nonempty suffix of \(y_1y_2^2 \cdots y_{n+1}^2 x^* \);
- \([\alpha(y_1)]^2 [\alpha(y_2)]^2 \cdots [\alpha(y_n)]^2 \) is a nonempty factor of \(y_1y_2^2 \cdots y_{n+1}^2 \).
If \(|\alpha(x)| \neq x\), then \([\alpha(x)] = xy_1 \cdots\) by (a) and so \([\alpha(x)^*] = \cdots y_1^* x^*\), which contradicts (b). Therefore \([\alpha(x)] = x\) and \([\alpha(x)^*] = x^*\), whence by (c),
\[
[\alpha(y_1)]^2[\alpha(y_2)]^2 \cdots [\alpha(y_n)]^2 = y_1^2 y_2^2 \cdots y_n^{r_n+1}.
\]

By comparing the number of distinct variables on both sides of this equality, it is obvious that some word \([\alpha(y_i)]\) on the left is a plain word with at least two distinct variables and so contains some \(y_j y_{j+1}\) as a factor. However, the left side would then be \(\cdots [\alpha(y_i)]^2 \cdots = \cdots y_j y_{j+1} \cdots\), and this is impossible in view of the right side.

\[\square\]

Inequality 2. \(W_n \neq W_{n+1}\).

Proof. Seeking a contradiction, suppose that \(W_n = W_{n+1}\), so that the equation \(p_{n+1} \approx q_{n+1}\) of \(W_{n+1}\) is deducible from \(\text{Eq}W_n\). Then there exists a finite sequence
\[p_{n+1} = t_1, t_2, \ldots, t_r = q_{n+1}\]
of distinct terms, where each equation \(t_i \approx t_{i+1}\) is directly deducible from some equation in \(\text{Eq}(A_2, *) \cup \{p_i \approx q_i\}\). It is clear that \(\{t_1\} = p_{n+1} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\).

Suppose that \(\{t_i\} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\) for some \(i \geq 1\). If there exists a substitution \(\alpha : \mathcal{X} \to \mathcal{T}(\mathcal{X}) \setminus \{\mathcal{B}\}\) such that either \(\alpha(p_i)\) or \(\alpha(q_i)\) is a subterm of \(t_i\), then as observed in Remark 7, one of \([\alpha(p_i)], [\alpha(p_i)]^r, [\alpha(q_i)],\) and \([\alpha(q_i)]^r,\) is a factor of \(\{t_i\} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\), whence Lemma 10 is contradicted. Therefore the equation \(t_i \approx t_{i+1}\) is not directly deducible from \(p_i \approx q_i\) and so is directly deducible from some equation in \(\text{Eq}(A_2, *)\). It follows that \(\{t_i\} \approx \{t_{i+1}\}\) is a word equation of \(\langle A_2, \ast \rangle\), whence \(\{t_{i+1}\} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\) by Lemma 9. Thus by induction, \(\{t_1\}, \{t_2\}, \ldots, \{t_r\} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\). But then \(q_{n+1} = \{t_r\} \in \mathcal{P}_{n+1} \cup \mathcal{P}_{n+1}^*\) is a contradiction.

\[\square\]

Inequality 3. \(W_n \neq W\).

Proof. As shown in the proof of Inequality 2, the equation \(p_{n+1} \approx q_{n+1}\) of \(W\) is not deducible from the equations of \(W_n\).

\[\square\]

Inequality 4. \(W \neq \mathcal{V}(B_2, \ast)\).

Proof. Seeking a contradiction, suppose that \(W = \mathcal{V}(B_2, \ast)\), so that the equation \(x^2 y^2 \approx y^2 x^2\) of \(\mathcal{V}(B_2, \ast)\) is deducible from \(\text{Eq}W\). More specifically, the equation \(x^2 y^2 \approx y^2 x^2\) is deducible from some finite subset \(\Sigma\) of \(\text{Eq}(A_2, \ast) \cup \{p_i \approx q_i \mid i \geq 2\}\).

Since \(\langle A_2, \ast \rangle\) does not satisfy \(x^2 y^2 = y^2 x^2\), the set \(\Sigma\) must contain some \(p_i \approx q_i\). Let \(n \geq 2\) be the largest integer such that \(p_n \approx q_n \in \Sigma\). Then \(W_n\) satisfies \(\Sigma\), it satisfies \(x^2 y^2 = y^2 x^2\) and so also \(p_{n+1} \approx q_{n+1}\). It follows that \(W_n = W_{n+1}\), whence Inequality 2 is contradicted.

\[\square\]

Corollary 11. The variety \(W\) is non-finitely based.

Proof. Seeking a contradiction, suppose that \(W\) is finitely based, say some finite subset \(\Sigma\) of \(\text{Eq}(A_2, \ast) \cup \{p_i \approx q_i \mid i \geq 2\}\) is an equational basis. If \(\Sigma\) does not contain any \(p_i \approx q_i\), then \(\mathcal{V}(A_2, \ast)\) satisfies \(\Sigma\) and so coincides with \(W\), which is impossible. Therefore \(\Sigma\) must contain some \(p_i \approx q_i\). Let \(n \geq 2\) be the largest integer such that \(p_n \approx q_n \in \Sigma\). Then \(W_n\) satisfies \(\Sigma\), so that \(W_n = W\), whence Inequality 2 is contradicted.

\[\square\]

Acknowledgments

The author thanks the anonymous reviewer for a number of helpful suggestions.
References

Department of Mathematics, Nova Southeastern University, Florida 33314, USA

E-mail address: edmond.lee@nova.edu